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Abstract: We demonstrate how one can construct renormalizable perturbative expansion

in formally nonrenormalizable higher dimensional field theories. It is based on 1/Nf -

expansion and results in a logarithmically divergent perturbation theory in arbitrary high

space-time dimension. First, we consider a simple example of N -component scalar filed

theory and then extend this approach to Abelian and non-Abelian gauge theories with

Nf fermions. In the latter case, due to self-interaction of non-Abelian fields the proposed

recipe requires some modification which, however, does not change the main results. The

resulting effective coupling is dimensionless and is running in accordance with the usual

RG equations. The corresponding beta function is calculated in the leading order and is

nonpolynomial in effective coupling. It exhibits either UV asymptotically free or IR free

behaviour depending on the dimension of space-time. The original dimensionful coupling

plays a role of a mass and is also logarithmically renormalized. We analyze also the

analytical properties of a resulting theory and demonstrate that in general it acquires

several ghost states with negative and/or complex masses. In the former case, the ghost

state can be removed by a proper choice of the coupling. As for the states with complex

conjugated masses, their contribution to physical amplitudes cancels so that the theory

appears to be unitary.
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1. Introduction

Nowadays it is popular to consider theories in extra dimensions as possible candidates

for models of physics beyond the Standard Model [1, 2]. Within the braneworld scenario

one assumes that the matter fields are localized at the brane while the force carriers can

travel in the bulk [3]. Sometimes other fields might also live in extra dimensions. This

means that one has higher dimensional QFT at least at short distances. However, it can

hardly be considered as a consistent quantum theory beyond the tree level because of a

lack of renormalizable perturbative expansion. Indeed, the usual coupling has a negative

dimension, thus leading to power increasing divergencies which are out of control. In our

previous work [4], we studied the UV divergencies in scalar theories in extra dimensions

within the perturbative expansion and demonstrated that although the leading divergences

are governed by the one-loop diagrams even in the nonrenormalizable case, as was argued

in [5], this does not help to conquer them.

Popular reasoning when dealing with extra dimensional theories relies on higher energy

(string) theory which is supposed to cure all the UV problems while the low energy one is

treated as an effective theory basically at the tree level. One way to do it is the Kaluza-

Klein approach [6]. In this case, one takes the Fourier transform over the extra dimensions

and obtains an infinite tower of states with quantized masses. Then one has to sum over all

these states. This sum is usually divergent and a special prescription is needed to regularize

it. Doubtfully, however, that this approach solves the problem of nonrenormalizability in

extra dimensional theories. As was shown in [7], the properly renormalized four-dimensional
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theory never forgets its higher dimensional origin. It has an explicit cut-off dependence

and can only be treated as an effective theory [8].

Here we make an attempt to construct renormalizable expansion in such formally

nonrenormalizable theories using the well known technique of the 1/N expansion [9, 10],

where in the scalar case N is the number of the scalar field components and in gauge

theories it is the number of fermion flavours Nf . The number of colours Nc is kept fixed.

This approach was successfully applied to non-linear sigma-models in 3 dimensions [11]

and to quantum gravity in four dimensions [12] both of which are nonrenormalizable by

power counting. Effectively, as we will show below, it leads to higher derivative theories

and causes the usual problems of unitarity, locality and causality. However, these problems

could be overcome though the analysis was performed mainly in the leading order [11, 12].

We follow the approach of [11, 12] and apply it to theories in extra dimensions with

the aim to construct renormalizable and unitary 1/N expansion suitable for perturbative

calculations. We first consider scalar higher dimensional theories as an example [13] and

then treat the gauge theories with fermions in the same way [14]. The resulting perturbation

theory is shown to be renormalizable, logarithmically divergent in any dimension D and

obtains an effective dimensionless expansion parameter. It is nonpolynomial in effective

coupling, but polynomial in 1/N and obeys the usual properties of renormalizable theory.

It might be either UV asymptotically free or IR free depending on the space-time dimension

D. The original dimensionful coupling does not serve as an expansion parameter anymore

and plays the role of mass which is also logarithmically divergent and multiplicatively

renormalized.

Within the dimensional regularization technique [15] we performed the renormalization

procedure in scalar and gauge theories in arbitrary odd space-time dimension and calculated

a few terms of the 1/N expansion. Even dimensions, in principle, can also be treated by

this method; however, they lead to some complications due to the appearance of log terms.

It is well known that the main problem of the 1/N expansion is to prove unitarity of

a resulting theory since the analytical properties of the effective propagator change. When

summing up the vacuum polarization diagrams to the denominator of a singlet field one

gets an imaginary part and, in general, additional poles in the complex plane. These poles

correspond to ghost states with the wrong metric and negative or complex masses. It is a

common problem in any realization of the 1/N expansion [12, 16, 17]. Effectively, it leads

to higher derivative terms which may result in dynamical instability [18]. This is another

issue that we do not discuss here. Note, however, the existence of ”benign” quantum

mechanical higher-derivative systems, where the classical vacuum is stable with respect

to small perturbations and the problems appear only at the nonperturbative level [19].

The question of unitarity in higher derivative gravity in four dimensions was discussed

in [12], where the role of ghost states was emphasized. It was also shown [20] that the

higher derivative operators do not always improve the UV behaviour due to subtleties in

analytical continuation from Minkowski to Euclidean metric.

Below we consider the unitarity problem in detail and suggest a possible solution which

seems to lead to a unitary theory in physical subspace.
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Figure 1: The chain of diagrams giving a contribution to the σ field propagator in the zeroth order

of 1/N expansion

2. 1/N expansion. Scalar theory

To illustrate the method, we start with the scalar theory. Let us take the usual N compo-

nent scalar field theory in D dimensions, where D takes an arbitrary value (> 4), with the

φ4 self-interaction. The Lagrangian looks like

L =
1

2
(∂µ

~φ)2 − 1

2
m2~φ2 − λ

8N
(~φ2)2, (2.1)

where N is the number of components of φ. We put N into the normalization of the

coupling so that λ is fixed while N → ∞. The theory is nonrenormalizable by power

counting, the coupling λ has negative dimension [λ] = 2 − D/2. It is useful to rewrite

eq. (2.1) introducing an auxiliary field σ [11]

L =
1

2
(∂µ

~φ)2 − 1

2
m2~φ2 − 1

2
√

N
σ(~φ2) +

1

2λ
σ2. (2.2)

Now one has two fields, one N component and one singlet with triple interaction. Let us

look at the propagator of the σ field. At the tree level it is just ”iλ”, but then one has to

take into account the corrections due to the loops of φ (see figure 1).

If one follows the N dependence of the corresponding graphs, one finds out that it

cancels: they are all of the zeroth order in 1/N . Thus, one can sum them up and get

- - - - = - - - -

(
1

1 − O- - -

)
=

i

1/λ − Π(p2)
, (2.3)

where the polarization operator Π(p2) depends on D. In the massless case it looks like

Π(p2) = −f(D)(−p2)D/2−2, f(D) =
Γ2(D/2 − 1)Γ(2 − D/2)

2D+1Γ(D − 2)πD/2
. (2.4)

The obtained propagator (2.3) has a typical for 1/N expansion behaviour. Namely, it

has a cut starting from p2 = 0 (for m = 0, otherwise from 4m2) and poles at negative or

complex p2 depending on D. Notice that f(D) is finite for any odd D, despite naive power

counting, and diverges for even D. This is due to the use of dimensional regularization:

the one-loop diagrams in odd dimensions are finite since the gamma function has poles

only at integer negative arguments and not at half-integer ones. This phenomenon can

also be understood in using other regularization techniques. In general one has the UV

divergence which has to be subtracted. This subtraction requires the redefinition of simple
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loop diagrams in D dimensions. However, the number of these diagrams is limited by

[D/2] − 1, i.e., in 4 and 5 dimensions one has to define 1 diagram, in 6 and 7 dimensions

- 2 diagrams, etc. In what follows we assume that this definition is made a’la dimensional

regularization. Moreover, for simplicity of integration we limit ourselves to odd dimensions,

which allows us to avoid the appearance of the log terms.

A special issue is the existence of poles in the propagator. Usually they signal of the

appearance of new asymptotic states which raise the problem of unitarity of a resulting

theory. We address this problem in more detail in section7. Here we just mention that one

can avoid poles on the real axis and have only complex conjugated pairs. This is enough

for integration in Feynman diagrams.

Thus, we have now the modified Feynman rules: the φ propagator is the usual one

while the σ propagator is given by eq. (2.3). One can then construct the diagrams using

these propagators and the triple vertex having in mind that any closed cycle of φ gives an

additional factor of N and any vertex gives 1/
√

N .

Let us first analyse the degree of divergence. Let us start with the φ propagator. If

the diagram with two external φ lines contains L loops, then it has 2L vertices, 2L − 1 φ

lines and L σ lines. Since each σ line now behaves like 1/pD−4, the degree of divergence is

ω(G) = LD − (2L − 1)2 − L(D − 4) = 2! (2.5)

for any D. Since this is a propagator, the divergence is proportional to p2 and thus is

reduced to the logarithmic one.

Let us now take the triple vertex. If it has L loops, then one has 2L + 1 vertices, 2L

φ lines and L σ lines. Hence, the degree of divergence is

ω(G) = LD − (2L)2 − L(D − 4) = 0! (2.6)

for any D. Thus, we again have only logarithmic divergence.

At last, consider the σ propagator. In L loops it has 2L vertices, 2L φ lines and L− 1

σ lines. The degree of divergence is

ω(G) = LD − (2L)2 − (L − 1)(D − 4) = D − 4. (2.7)

This means that in odd D it has no global divergence (again we explore the properties of

dimensional regularization) and the only possible divergencies are those of the subgraphs

eliminated by renormalization of φ and the coupling. To see this, consider a genuine

diagram for the σ-field propagator which is shown in figure 2, where the blobs denote the

1PI vertex or propagator subgraphs.

After the R′ operation1 we do not have any poles in the integrand for the remaining

one-loop integral. What is left is the finite part containing logarithms of momenta. This

final integration has the following form:

∫
lnn(k2/µ2) lnm(k2/p2) lnk(k2/(k − p)2)

k2(k − p)2
dDk,

1The R′ operation means that we subtract from the diagram all divergent subgraphs
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Figure 2: General type of the σ-field propagator

R′ = –

Figure 3: Demonstration of the global divergence cancellation in the two-loop diagram.

where n,m, k are some numbers. We ignore here all the masses since they do not contribute

to the UV behaviour. Due to the naive power counting of divergences in dimensional

regularization we obtain the result proportional to Γ(2 − D/2) which is finite for any odd

D. The logarithms can not change this property.

To demonstrate how this works explicitly, we consider a particular example of the

two-loop diagram. The result of the R′-operation is shown in figure 3. After subtracting

the divergence in a subgraph we have prior to the last integration

∫
dD−2εk

k2(p − k)2

[
Γ(−1 + ε)

Γ(D/2 − 1 − ε)Γ(2 − ε)

Γ(D/2 − 2)Γ(D/2 + 1 − 2ε)

1

(k2)ε
+

1

ε

Γ(D/2 − 1)

Γ(D/2 − 2)Γ(D/2 + 1)

]
.

The pole terms in the integrand cancel and expanding it over ε one gets log(k2). It is,

however, easier to integrate it without expanding over ε which gives

Γ(−1 + ε)
Γ2(D/2 − 1 − ε)Γ(2 − ε)Γ(D/2 − 1 − 2ε)Γ(2 + 2ε − D/2)

Γ(D/2 − 2)Γ(D/2 + 1 − 2ε)Γ(1 + ε)Γ(D − 2 − 3ε)

(p2)D/2−2

(p2)2ε

+
1

ε

Γ(D/2 − 1)

Γ(D/2 − 2)Γ(D/2 + 1)

Γ2(D/2 − 1 − ε)Γ(2 + ε − D/2)

Γ(D − 2 − 2ε)

(p2)D/2−2

(p2)ε
= O(1).

Thus, after the R′ operation the diagram is finite and we do not need the σ field renormal-

ization.

This way one gets the perturbative expansion with only logarithmic divergences. This

is not expansion over dimensionful coupling λ but rather 1/N expansion with dimensionless

parameter.
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a b c

Figure 4: The leading order diagrams giving a contribution to the φ field propagator and the triple

vertex in 1/N expansion

3. Properties of the 1/N expansion

Consider now the leading order calculations. We start with the 1/N terms for the prop-

agator of φ and the triple vertex. One has the diagrams shown in figure 4. Notice that

besides the one-loop diagrams in the same order of the 1/N expansion one has the two-loop

diagram for the vertex.

Let us start with the diagram a). One has

Ia ∼
∫

dD′

k

(2π)DN

1

[(k − p)2 − m2][1/λ − Π(k2)]
, D′ = D − 2ε.

Since we are interested in the UV behaviour we can omit the mass from the φ field propa-

gator and ”1/λ” from the σ field propagator and take the massless limit of the polarization

operator Π(k2) . We will restore them when discussing the analytical properties. Then the

UV asymptotics is given by

Ia ⇒
∫

dD′

k

(2π)DNf(D)

1

(k − p)2(−k2)D/2−2
.

One can see that the original coupling λ plays the role of inverse mass and drops out from

the UV expression. What is left is a dimensionless 1/N term.

Calculating the singular parts of the diagrams of figure 4 in dimensional regularization

with D′ = D − 2ε one finds

Diag.a ⇒ 1

εN
A, Diag.b ⇒ 1

εN
B, Diag.c ⇒ 1

εN
C, (3.1)

A =
2Γ(D − 2)

Γ(D/2 − 2)Γ(D/2 − 1)Γ(D/2 + 1)Γ(2 − D/2)
,

B =
D

4 − D
A,

C =
D(D − 3)

4 − D
A.

The corresponding renormalization constants in the MS scheme then are

Z−1
2 = 1 − 1

ε

A

N
, (3.2)

Z1 = 1 − 1

ε

B + C

N
. (3.3)
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a b c d

e f g

Figure 5: The second order diagrams giving a contribution to the φ field propagator in 1/N

expansion

There is no any coupling in these formulas, its role is played by 1/N which is therefore

infinitely renormalized. This seems to be unsatisfactory and to overcome this problem we

introduce a new dimensionless coupling h associated with the triple vertex (and not with

the σ propagator) as

Lint = −
√

h

2
√

N
σ~φ2.

Then in the leading order in 1/N the renormalization constants and the coupling take the

form

Z−1
2 = 1 − h

ε

A

N
, (3.4)

Z1 = 1 − h

ε

B

N
− h2

ε

C

N
, (3.5)

hB = (µ2)εhZ2
1Z−2

2 = h

(
1 − h

ε

2(A + B)

N
− h2

ε

C

N

)
. (3.6)

This is not, however, the final expression. To see this, we consider the next order of

the 1/N expansion. The corresponding diagrams for the φ propagator are shown in figure

5. Again one can see that the 1/N2 terms contain not only the two-loop diagrams but also

the three- and even four-loop ones.

All these diagrams are double logarithmically divergent, i.e., contain both single and

double poles in dimensional regularization. We calculate the leading double pole after

subtraction of the divergent subgraphs, i.e. perform the R′-operation. The answer is:

Diag.a ⇒ − 1

ε2N2

1

2
A2h2, Diag.b ⇒ − 1

ε2N2
ABh2, Diag.c ⇒ − 1

ε2N2
A2,

Diag.d ⇒ − 1

ε2N2

4

3
ACh3, Diag.e ⇒ − 1

ε2N2

2

3
A2h3, Diag.f ⇒ − 1

ε2N2

2

3
ABh3,

Diag.g ⇒ − 1

ε2N2
ACh4. (3.7)
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Here we face a problem, namely, subtracting the divergent subgraphs in the graphs e-g, we

get the diagram which is absent in our expansion, since it is already included in our bold

σ line (see figure 6).

There would be no problem unless this diagram is needed

Figure 6: The ”forbidden”

loop diagram

to match the so-called pole equations [21] which allow one to

calculate the higher order poles in the Z factors from the sin-

gle one. However, if we include this diagram in the σ line, it

will not change the latter, except for the additional h factor

coming from the vertex and not compensated by the propa-

gator. Apparently, one can continue this insertion procedure

and add any number of such loops not changing the order of 1/N expansion. The result is

the sum of a geometrical progression
1

1 + h
,

which should multiply every σ line. Altogether this leads to the following effective La-

grangian for UV 1/N perturbation theory

Leff =
1

2
(∂µ

~φ)2 −
√

h

2
√

N
σ(~φ2) +

1

2λ
σ2 +

1

2
f(D)σ(∂2)D/2−2σ(1 + h). (3.8)

Having all this in mind we come to the final expressions for the Z factors within the

1/N expansion:

Z1 = 1 − 1

εN

(
Bh

1 + h
+

Ch2

(1 + h)2

)
+ O(

1

N2
), (3.9)

Z−1
2 = 1 − 1

εN

Ah

1 + h
+

1

ε2N2

(
3

2

A2h2

(1 + h)2
+

ABh2

(1 + h)2
+

2

3

A2h3

(1 + h)3

+
2

3

ABh3

(1 + h)3
+

4

3

ACh3

(1 + h)3
+

ACh4

(1 + h)4

)
+ O(

1

εN2
). (3.10)

4. 1/Nf expansion. QED

Let us consider now the usual QED with Nf fermion fields in D dimensions, where D takes

an arbitrary odd value. The Lagrangian looks like

L = −1

4
(∂µAν − ∂νAµ)2 − 1

2α
(∂µAµ)2 + iψ̄i∂̂ψi − mψ̄iψi +

e√
Nf

ψ̄iÂψi. (4.1)

According to the general strategy, we now have to consider the photon propagator.

Since due to the gauge invariance the polarization operator is transverse, it is useful to

consider a transverse (Landau) gauge. This is not necessary but simplifies the calculations.

Then in the leading order of the 1/N expansion one has the following sequence of bubbles

(see figure 7) summed up into a geometrical progression. This is nothing more than the

renormalon chain [22]. The resulting photon propagator takes the form similar to that for

an auxiliary field σ in scalar case

Dµν(p) = − i

p2

(
gµν − pµpν

p2

)
1

1 + e2f(D)(−p2)D/2−2
, (4.2)

– 8 –
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Figure 7: The chain of diagrams giving a contribution to the A field propagator in the zeroth

order of the 1/Nf expansion

where

f(D) =
Γ2(D/2)Γ(2 − D/2)

2D−[D/2]−1Γ(D)πD/2

and we put m = 0 for simplicity.

This practically coincides with the expression obtained in scalar theory and all the

following steps just repeat those in the latter. We change the normalization of the gauge

field Aµ → Aµ/e and introduce the dimensionless coupling h associated with the triple

vertex, so the effective Lagrangian takes the form

Leff = −1

4
Fµν

(
1

e2
+ f(D)(∂2)D/2−2(1 + h)

)
Fµν − 1

2αe2
(∂µAµ)2

+iψ̄i∂̂ψi − mψ̄iψi +

√
h√
Nf

ψ̄iÂψi. (4.3)

This new dimensionless coupling h enters into the gauge transformation and plays the role

of a gauge charge. The old coupling e, on the contrary, is dimensionful and acts as a

mass parameter in a gauge propagator. Since the coupling constant h is dimensionless the

effective Lagrangian (4.3) when omitting the first term is conformal as considered in [23]

where the theory was taken in D = 3.

Again, one has the modified Feynman rules with the photon propagator that decreases

in the Euclidean region like 1/(p2)D/2−1, thus improving the UV behaviour in a theory.

The only divergent graphs are those of the fermion propagator and the triple vertex. They

are both logarithmically divergent for any odd D. The photon propagator is genuinely finite

and may contain divergencies only in subgraphs. One basically has the same graphs as in

a scalar theory but with solid lines being the fermion ones and the dashed lines being the

photon one.

The only difference (or simplification) comes from the Furry theorem and the gauge

invariance. Namely, all triangles with three photon external lines vanish due to the Furry

theorem and the gauge invariance which connects the fermion propagator with the triple

vertex implies that Z1 = Z2. This relation holds in the 1/Nf expansion like in the usual

PT. Thus, using the notation of a previous section, in the leading order one has

A =
Γ(D)(D − 1)(2 − D/2)

2[D/2]+1Γ(2 − D/2)Γ(D/2 + 1)Γ2(D/2)
, B = −A, C = 0. (4.4)

The same results were obtained in [24] where the author calculated the anomalous dimen-

sions at the D-dimensional critical point where the fields obey asymptotic scaling and are

– 9 –
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a b c

Figure 8: The first order diagrams giving a contribution to the 1/e2 renormalization in the 1/Nf

expansion

conformal. This leads to the following renormalization constants in the leading order in

1/Nf :

Z1 = Z2 = 1 +
1

εNf

Ah

(1 + h)
, Z3 = 1 (4.5)

and, consequently, hB = h. Hence, in odd-dimensional QED in the leading order of the

1/Nf expansion one does not need the coupling constant renormalization; only the wave

function renormalization remains. This means that the coupling is not running.

In the second order one again has the same diagrams as in a scalar theory but with

vanishing triangles. The renormalization constant in the second order is also essentially

simplified compared to the scalar case and looks like

Z1 = 1 +
1

εNf

Ah

1 + h
+

1

ε2N2
f

1

2

A2h2

(1 + h)2
+ O

(
1

εN2
f

)
. (4.6)

Like in the scalar case the original dimensionful coupling e is not an expansion parame-

ter anymore, but plays a role of a mass and is multiplicatively logarithmically renormalized.

The leading order diagrams are shown in figure 8.

They give the following contribution:

Diag.a ⇒ h2

εNf (1 + h)2
F, Diag.b ⇒ h2

εNf (1 + h)2
E, Diag.c ⇒ 0, (4.7)

F =
Γ(D + 1)(D/2 − 1)(D − 1)2(2 − D/2)

2D/2+1Γ(2 − D/2)Γ(D/2 + 2)Γ2(D/2)
,

E = − D2 + D/2 − 9

D/2(D/2 − 1)(D − 1)
F.

So one has

Z1/e2 = 1 − 1

εNf

(
(F + E)h2

(1 + h)2

)
+ O

(
1

N2
f

)
. (4.8)

5. 1/Nf expansion. QCD

Consider now a non-Abelian theory with Nf fermions. Notice that in QCD, contrary to

QED, all Feynman diagrams contain group factors so that the actual expansion parameter

becomes Nc/Nf , thus requiring that this ratio is small. At the same time, to preserve
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Figure 9: The diagrams giving a contribution to the A3 term in the zeroth order of the 1/Nf

expansion

asymptotic freedom in 4 dimensions one needs Nc/Nf > 2/11. So one has some interval

where the Nc/Nf expansion might be valid. Of course, in non-Abelian theories the 1/Nc

expansion would be preferable, since it accumulates the interactions of the gauge fields,

however, in this case already the lowest approximation consists of all planar diagrams and

is not known [27].

In the non-Abelian case one has some novel features due to the presence of the triple and

quartic gauge vertices and the ghost fields. Similar to (4.1) we write down the Lagrangian

for the gauge fields and Nf fermions as

L = −1

4
(F a

µν)2 − 1

2α
(∂µAa

µ)2 + iψ̄i∂̂ψi − mψ̄iψi +
g√
Nf

ψ̄iÂaT aψi + ∂µc̄aDµca,

where

F a
µν = ∂µAa

ν − ∂νAa
µ +

g√
Nf

fabcAb
µAc

ν , Dµ = ∂µ +
g√
Nf

[Aµ, ]

Like in QED we choose the Landau gauge and sum up the fermion bubble diagrams into

the denominator of the gauge field propagator

Gab
µν = − iδab

p2

(gµν − pµpν

p2 )

1 + g2f(D)(−p2)D/2−2
, (5.1)

where the coefficient f(D) differs from the Abelian case only by the colour factor T (R)

f(D) =
Γ2(D/2)Γ(2 − D/2)

2D−[D/2]−1Γ(D)πD/2
T (R)

and again we put m = 0 for simplicity.

In the non-Abelian case, contrary to the Abelian one, one has the triple and quartic

self-interaction of the gauge fields. These vertices, which are suppressed by 1/
√

Nf and

1/Nf , respectively, obtain loop corrections of the same order in 1/Nf . The effective vertices

in the leading order are given by the diagrams shown in figure 9 and 10.

Thus, besides the modification of the gauge propagator one has the modified vertices.

The effective Lagrangian in the case of vertices is not given by a simple local expression due

to complexity of the loop diagrams. So we keep it in the form of the diagrams which have

to be evaluated in integer dimension. Due to the rules of dimensional regularization they

– 11 –
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Figure 10: The diagrams giving a contribution to the A4 term in the zeroth order of the 1/Nf

expansion

are finite for any odd D, otherwise one has to redefine them. What is crucial, however, is

that there are only three diagrams which have to be redefined. Hence, after rescaling the

gauge field Aµ → Aµ/g one obtains the following effective Lagrangian:

Leff = − 1

4g2
(F a

µν)2 – ( + + ) (5.2)

− 1

2αg2
(∂µAa

µ)2 + iψ̄i∂̂ψi − mψ̄iψi +
1√
Nf

ψ̄iÂaT aψi + ∂µc̄aDµca,

Notice that dimensionful coupling g drops from all terms except for the first one and is not

an expansion parameter anymore.

Calculating the degree of divergence after summing up the diagrams of the zeroth

order, similar to the scalar case and QED, one has only four types of logarithmically

divergent diagrams: the fermion and the ghost propagators, the fermion-gauge-vertex and

ghost-gauge-ghost vertex. The gauge propagator as well as pure gauge vertices are finite

and may contain only divergent subgraphs.

The next step is the introduction of a dimensionless coupling h. Here one should be

accurate since this coupling enters not only into the triple gauge-fermion vertex, but due

to the gauge invariance should be present in gauge and gauge-ghost vertices. It should be

the same in all three of them. In the case of a gauge theory, the coupling h enters the

gauge transformation and acts as a gauge charge of the fermion and gauge fields.

When constructing the Feynman diagrams, one reproduces the one-loop cycles that

are already present in the effective Lagrangian (5.2) but with additional factors h. In the

scalar or QED case, this happened only for the propagator, but here it is also true for the

vertices. As a result, the final expression for the effective Lagrangian takes the form

Leff = − 1

4g2
(F a

µν)2 – ( + + ) (1+h) (5.3)

− 1

2αg2
(∂µAa

µ)2 + iψ̄i∂̂ψi − mψ̄iψi +

√
h√
Nf

ψ̄iÂaT aψi + ∂µc̄aDµca,
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Figure 11: The leading order diagrams giving a contribution to the ψ field propagator and the

triple vertex in 1/Nf expansion

where

F a
µν = ∂µAa

ν − ∂νAa
µ +

√
h√
Nf

fabcAb
µAc

ν , Dµca = ∂µca +

√
h√
Nf

fabcAb
µcc.

Consider now the leading order calculations. We start with the 1/Nf terms for the

fermion and the triple fermion-gauge-fermion vertex. The diagrams are shown in figure 11.

The first two are the same as in QED. The third diagram contains new effective vertex

which includes the usual triple vertex and the fermion triangle. The usual vertex does

not give a contribution since it is finite by a simple power counting. At the same time,

the fermion triangle is momentum dependent and the resulting diagram is logarithmically

divergent.

Calculating the singular parts of the diagrams of figure 11 in dimensional regularization

with D′ = D − 2ε one finds

Diag.a ⇒ 1

εNf

h

1 + h
A, Diag.b ⇒ 1

εNf

h

1 + h
B, Diag.c ⇒ 1

εNf

h

1 + h
C,

A =
Γ(D)(D − 1)(2 − D/2)CF

2[D/2]+1Γ(2 − D/2)Γ(D/2 + 1)Γ2(D/2)T
, (5.4)

B = −CF − CA/2

CF
A,

C = − (1 − D/2)CA

2(2 − D/2)CF
A,

which is again in agreement with [25]. Notice that the third diagram is proportional to

h/(1 + h) instead of h2/(1 + h)2 as in the scalar case. The reason is that now we have an

effective triple gauge vertex proportional to
√

h(1 + h) instead of
√

h h that cancels one

factor of h/(1 + h).

Therefore, in the leading order in the 1/Nf expansion the renormalization constants

take the form

Z−1
2 = 1 − 1

εNf

Ah

(1 + h)
, (5.5)

Z1 = 1 − 1

εNf

(B + C)h

(1 + h)
, (5.6)
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Figure 12: The leading order diagrams giving a contribution to the ghost field propagator and the

triple vertex in 1/Nf expansion

Zh = Z2
1Z−2

2 = 1 − 1

εNf

2(A + B + C)h

(1 + h)
. (5.7)

To check the gauge invariance, we calculated the renormalization of the coupling

through the gauge-ghost interaction. The leading diagrams are shown in figure 12.

Calculating the singular parts of the diagrams in dimensional regularization one finds

Diag.a ⇒ 1

εNf

h

1 + h
A′, Diag.b ⇒ 1

εNf

h

1 + h
B′, Diag.c ⇒ 1

εNf

h

1 + h
C ′,

A′ =
Γ(D)(D − 1)CA

2[D/2]+2Γ(2 − D/2)Γ(D/2 + 1)Γ2(D/2)T
, (5.8)

B′ = 0,

C ′ = 0,

which gives the following renormalization constants in the ghost sector

Z̃1 = 1, (5.9)

Z̃−1
2 = 1 − 1

εNf

A′h

1 + h
, (5.10)

Zh = Z̃2
1 Z̃−2

2 = 1 − 2

εNf

A′h

1 + h
. (5.11)

One can see that the following relation holds:

A + B + C = A′ + B′ + C ′, (5.12)

which follows from the gauge invariance.

We look now at the next-to-leading order to compare it with the scalar case. The

corresponding diagrams for the fermion propagator are shown in figure 13. They require

some explanation. The first line of diagrams in figure 13 is obtained from the one-loop

diagrams of figure 11 by inserting into the vertex or the fermion line of the one-loop

divergent subgraphs from figure 11. For example, the diagram d in figure 13 is the diagram

a from figure 11 with divergent one-loop subgraph c from figure 11 substituted instead

of the initial vertex. The second line of the diagrams in figure 13 is obtained from the

”forbidden” diagram of figure 14 by inserting the same one-loop divergent subgraphs from
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e f g

Figure 13: The second order diagrams giving a contribution to the fermion propagator in the

1/Nf expansion

Figure 14: The ”forbidden” loop diagram

+ →

Figure 15: The diagram e from figure 13 as a result of insertion of the diagram a from figure 11

into the fermion line.

figure 11. The diagram e is the diagram of figure 14 with insertion of the subgraph a from

figure 11 into the fermion line (see figure 15) and the diagram g comes from the insertion of

the subgraph c from figure 11 instead of one of the vertices in the fermion loop (see figure

16).

All these diagrams are double logarithmically divergent, i.e., contain both single and

double poles in dimensional regularization. We calculated the leading double poles after
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+ →

Figure 16: The diagram g from figure 13 as a result of insertion of the diagram c from figure 11

instead of one of the vertices in the diagram from figure 14.

subtraction of the divergent subgraphs, i.e., performed the R′-operation. The answer is:

Diag.a ⇒ − 1

ε2N2
f

A2h2

2(1 + h)2
, Diag.b ⇒ − 1

ε2N2
f

ABh2

(1 + h)2
, Diag.c ⇒ − 1

ε2N2
f

A2h2

(1 + h)2
,

Diag.d ⇒ − 1

ε2N2
f

ACh2

(1 + h)2
, Diag.e ⇒ 1

ε2N2
f

2A2h3

3(1 + h)3
, (5.13)

Diag.f ⇒ 1

ε2N2
f

2ABh3

3(1 + h)3
, Diag.g ⇒ 1

ε2N2
f

2ACh3

3(1 + h)3
.

We performed also the calculation for the fermion-gauge-fermion vertex but do not present

the diagram-by-diagram result because of the lack of space and give only the final answer.

Having all this in mind we come to the final expressions for the Z factors in the second

order of the 1/Nf expansion in the fermion sector:

Z1 = 1 − 1

εNf

(B + C)h

1 + h
+

1

ε2N2
f

(
3

2

(B + C)2h2

(1 + h)2
+

A(B + C)h2

(1 + h)2

−2

3

(B + C)2h3

(1 + h)3
− 2

3

A(B + C)h3

(1 + h)3

)
+ O

(
1

εN2
f

)
, (5.14)

Z−1
2 = 1 − 1

εNf

Ah

1 + h
+

1

ε2N2
f

(
3

2

A2h2

(1 + h)2
+

A(B + C)h2

(1 + h)2

−2

3

A(A + B + C)h3

(1 + h)3

)
+ O

(
1

εN2
f

)
. (5.15)

The same calculation in the ghost sector gives

Z̃1 = 1, (5.16)

Z̃−1
2 = 1 − 1

εNf

A′h

1 + h
+

1

ε2N2
f

(
3

2

A′2h2

(1 + h)2
− 2

3

A′(A + B + C)h3

(1 + h)3

)
+ O

(
1

εN2
f

)
.

Notice the absence of the ghost-gauge-ghost vertex renormalization.

The final second order expression for the coupling renormalization calculated in both

ways having in mind relation (5.12) is

Zh = 1 − 1

εNf

2(A+B+C)h

1 + h
+

1

ε2N2
f

(
4
(A+B+C)2h2

(1 + h)2
− 4

3

(A+B+C)2h3

(1 + h)3

)
+ O

(
1

εN2
f

)
.

(5.17)
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Figure 17: The first order diagrams giving a contribution to the 1/g2 renormalization in 1/Nf

expansion

Like in the scalar and QED case, one can also calculate the renormalization of the

original coupling g2. The leading order diagrams are shown in figure 17 which give the

following singular parts like in [25]

Diag.a ⇒ 1

εNf

h2

(1 + h)2
F, Diag.b ⇒ 1

εNf

h2

(1 + h)2
E,

Diag.c ⇒ 1

εNf

h2

(1 + h)2
G, Diag.d ⇒ 1

εNf

h2

(1 + h)2
H, (5.18)

F =
Γ(D + 1)(D/2 − 1)(D − 1)2(2 − D/2)CF

2[D/2]+2Γ(2 − D/2)Γ(D/2 + 2)Γ2(D/2)T (R)
,

E = − D2 + D/2 − 9

D/2(D/2 − 1)(D − 1)

CF − CA/2

CF
F,

G =
4(D/2)6 − 6(D/2)5 + 18(D/2)4 − 67(D/2)3 + 85(D/2)2 − 19D + 6

2(D − 1)2(1 − D/2)2(2 − D/2)D

CA

CF
F,

H =
D3 − D2/2 − 2D + 1

D(1 − D/2)(2 − D/2)(D − 1)2
CA

CF
F.

The corresponding renormalization constant looks like

Z1/g2 = 1 − 1

εNf

(F + E + G + H)h2

(1 + h)2
. (5.19)

6. Renormalization group in 1/N expansion

Having these expressions for the Z factors one can construct the coupling constant renor-

malization and the corresponding RG functions. One has as usual in the dimensional

regularization

hB = (µ2)εhZ2
1Z−2

2 = (µ2)ε

(
h +

∞∑

n=1

an(h,N)

εn

)
, (6.1)

Zi = 1 +

∞∑

n=1

ci
n(h,N)

εn
, (6.2)

where the first coefficients an and ci
n can be deduced from the Z factors.
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This allows one to get the anomalous dimensions and the beta function defined as

γ(h,N) = −µ2 d

dµ2
log Z = h

d

dh
c1, (6.3)

β(h,N) = 2h(γ1 + γ2) =

(
h

d

dh
− 1

)
a1. (6.4)

We first consider the scalar case. With the help of eqs. (3.9), (3.10) one gets in the

leading order of 1/N expansion2

γ2(h,N) = − 1

N

Ah

(1 + h)2
, (6.5)

γ1(h,N) = − 1

N

(
Bh

(1 + h)2
+

2Ch2

(1 + h)3

)
,

β(h,N) = − 1

N

(
2(A + B)h2

(1 + h)2
+

4Ch3

(1 + h)3

)
. (6.6)

It is instructive to check the so-called pole equations [21] that express the coefficients

of the higher order poles in ε of the Z factors via the coefficients of a simple pole. For Z−1
2

one has, according to (3.10),

c1(h,N) = − 1

N

Ah

1 + h
, (6.7)

c2(h,N) =
1

N2

(
3

2

A2h2

(1 + h)2
+

ABh2

(1 + h)2
+

2

3

A2h3

(1 + h)3

+
2

3

ABh3

(1 + h)3
+

4

3

ACh3

(1 + h)3
+

ACh4

(1 + h)4

)
. (6.8)

At the same time the coefficient c2 can be expressed through c1 via the pole equations as

h
dc2

dh
= γ2c1 + β

dc1

dh
, (6.9)

which gives

h
dc2

dh
=

1

N2

Ah

(1 + h)2
Ah

1 + h
+

1

N2

(
2(A + B)h2

(1 + h)2
+

4Ch3

(1 + h)3

)
A

(1 + h)2
.

Integrating this equation one gets for c2 the expression coinciding with (6.8) which was

obtained by direct diagram evaluation. Notice that to get this coincidence the h-dependence

in the denominator of eqs. (3.9), (3.10) was absolutely crucial.

We have also checked the pole equations for the renormalized coupling. They look as

follows (
h

d

dh
− 1

)
an = β

dan−1

dh
. (6.10)

In the leading order in h when

a1(h,N) ≃ −2(A + B)h2

N
and β(h,N) ≃ −2(A + B)h2

N

2Note that the anomalous dimension of a field γ2, is defined with respect to Z−1

2
.
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one should have a geometric progression

an(h,N) = a1(h,N)n.

We have checked this relation up to three loops and confirmed its validity.

Having expression for the β function one may wonder how the coupling is running.

The crucial point here is the sign of the β function. One has

β(h,N) = − 1

N

4Γ(D − 2)

(
2h2

(1 + h)2
+

D(D − 3)h3

(1 + h)3

)

Γ(D/2 − 2)Γ(D/2 − 1)Γ(D/2 + 1)Γ(3 − D/2)
. (6.11)

It can also be rewritten as

β(h,N) = − 1

N

2D−1Γ(D/2 − 1/2)(−)(D−1)/2

(
2h2

(1 + h)2
+

D(D − 3)h3

(1 + h)3

)

Γ(1/2)πΓ(D/2 + 1)
, (6.12)

that clearly indicates that the theory is UV asymptotically free for D = 2k + 1, k - even

and IR free for k-odd. Solution of the RG equation looks somewhat complicated, but for

the small coupling in the leading order it simply equals the usual leading log approximation

h(t, h) ≃ h

1 − β0h log(t)
, β0 = − 1

N

2DΓ(D/2 − 1/2)(−)(D−1)/2

Γ(1/2)πΓ(D/2 + 1)
. (6.13)

For example, for D = 5, 7 the beta function equals β0 = −256/15π2N and 212/105π2N ,

respectively.

We now come to the gauge theories. With the help of eqs. (5.14), (5.15) one gets in

the leading order of the 1/Nf expansion

γ2(h,Nf ) = − 1

Nf

Ah

(1 + h)2
, γ1(h,Nf ) = − 1

Nf

(B + C)h

(1 + h)2
, (6.14)

γ̃2(h,Nf ) = − 1

Nf

A′h

(1 + h)2
, γ̃1(h,Nf ) = O(

1

N2
f

), (6.15)

β(h,Nf ) = − 1

Nf

2(A + B + C)h2

(1 + h)2
, (6.16)

The situation is similar to that in scalar theory. Only the value of coefficients are

different. This, however, does not influence the pole equations. They remain to be valid.

Equation (5.17) gives us the sign of the beta function. In the leading order one has

dh

dt
= β(h) = − Γ(D)(D − 1)CA

2[D/2]+2Γ(2 − D/2)Γ(D/2 + 1)Γ2(D/2)Nf T

h2

(1 + h)2
, (6.17)

which means that contrary to the scalar case (6.12) β(h) > 0 for D = 5, β(h) < 0 for

D = 7 and then alternates with D as in the scalar case.
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Solution to eq. (6.17) for small h is again reduced to the usual one. As for the original

couplings, there is no simple solution either except for the QED case, where the coupling

h is not running and solution of the RG equation for 1/e2 with fixed h is

1

e2
=

1

e2
0

(
p2

p2
0

)γ

, (6.18)

with the anomalous dimension

γ =
Γ(D)(D − 1)(D/2 − 2)(D − 3)(D + 2)(D − 6)

2[D/2]+2Γ(D/2 + 2)Γ2(D/2)Γ(2 − D/2)Nf

h2

(1 + h)3
.

The sign of γ depends on D. For D = 5, 7 γ > 0, for D = 9 γ < 0 and then alternates

with every odd D. eq. (6.18) reminds the power law behaviour of the initial coupling in

extra dimensions within the Kaluza-Klein approach [26] though anomalous dimension γ is

different.

7. Analytical properties and unitarity

Consider now the analytical properties of the propagator and related problem of unitarity.

The problem is common to scalar and gauge theories so for simplicity we concentrate on the

sigma field propagator (2.3). Besides the cut starting from 4m2 it has poles in the complex

p2 plane. Hence, knowing the analytical structure, one can write down the Källen-Lehmann

representation [28].

Let us first consider the massless case (2.4)

D(p2) =
i

1/λ + f(D)(−p2)D/2−2
. (7.1)

Depending on a sign of f(D) there are two possibilities: either one has a pole at real axis

and (possibly) pairs of complex conjugated poles (f(D) < 0, D=5,9,. . . ) or one has only

pairs of complex conjugated poles (f(D) > 0, D=7,11,. . . ) and all the rest appears at the

second Riemann sheet. We consider the cases of D = 5 and D = 7 as the nearest options.

One has, respectively,

D5(p
2) = − 2(256π)2λ2

p2 + (256π/λ)2
+

1

π

∫ ∞

0

dm2

p2 − m2

256πλ2
√

m2

(256π)2 + λ2m2
, (7.2)

and

D7(p
2) = −2

3

(8192π2

λ )2/3eπi/3

p2 + (8192π2

λ )2/3e−2πi/3
− 2

3

(8192π2

λ )2/3e−πi/3

p2 + (8192π2

λ )2/3e2πi/3

+
1

π

∫ ∞

0

dm2

p2 − m2

8192π2λ2(m2)3/2

λ2(m2)3 + (8192π2)2
. (7.3)

Notice that the continuous spectrum has a positive spectral density and corresponds to

production of real pairs of φ fields (or pairs of fermions in the gauge case). These states

are present in the original spectrum and cause no problem with unitarity. This analysis
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was performed at the tree level in [11] and can be extended to any number of loops. One

can show that all the cuts imposed on diagrams when applying Cutkosky rules [29] in any

order of perturbation theory lead to the usual asymptotic states on mass shell and no new

states appear.

The problem comes with the poles. One can see that the pole terms come with negative

sign and, therefore, correspond to the ghost states [16]. For D = 5 one has only one pole

at the positive real semiaxis while for D = 7 one has a pair of complex conjugated poles,

as shown in figure 18.

The presence of these ghost

D=5 D=7

Re

Im

Re

Im

Figure 18: The analytical structure of the auxiliary field

propagator

states is the drawback of a theory.

They signal of instability of the

vacuum state. Indeed, as it was

shown in [30], the vacuum might

be unstable with respect to ap-

pearance of condensates. This will

lead to additional diagrams similar

to those in QCD. However, they do

not seem to improve the situation.

Thus, one has either to try to get

rid of ghost poles or to make sure

that they do not give a contribu-

tion to physical amplitudes.

Let us first see what happens if one takes a nonzero mass of the φ field. The polarization

operator then is

Π(p2) = −Γ(2 − D/2)

2D+1πD/2

∫ 1

0
dx(−p2x(1 − x) + m2)D/2−2. (7.4)

For D = 5 one has

Π5(p
2) =

1

32π2
m




4
√

a + (a − 4) ln(2−
√

a
2+

√
a
)

8
√

a


 , (7.5)

where a = p2

m2 . Since the existence of a pole is governed by the equation

Π(p2) = 1/λ,

one has to check whether this equation is satisfied somewhere in the complex p2 plane.

Remind that for the massless case the pole exists at p2 = −(256π/λ)2. In figure 19, we

show the plot of Π5(p
2) for real p2 (left) and the absolute value in the complex plane (right).

One can see that for negative p2 the polarization operator is always greater than 1

(in units of 1
32π2 mλ), for positive p2 it is greater than 1/2 and then becomes complex.

The absolute value in the complex plane is also always greater than 1/2. This means that
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Figure 19: Polarization operator for D=5 as a function of p2/m2 for real p2(left) and the absolute

value in the complex plane (right).

depending on the value of dimensionless parameter ξ = λ2m one has different possibilities:

for ξ < 32π2 the pole exists at negative real p2, for 32π2 < ξ < 64π2 the pole exists at

positive real p2 < 4m2. For ξ > 64π2 there are no poles at all. In this phase a theory is

free from unphysical states. A similar situation, but in 4 dimensions, was discussed in [17].

So, it looks like by choosing parameter ξ one can get rid of the unitarity problem.

However, it reappears the other way. Indeed, one can see that the denominator of the

propagator in this phase becomes negative. It is also negative at p2 = 0. In the scalar case

the value of the σ field propagator at p2 = 0 defines the effective potential of φ fields after

integrating out the auxiliary field σ. This way the negative value of the propagator leads to

effective potential with negative quartic coupling, i.e. unbounded from below. In the case

of the gauge theory the value of the denominator at p2 = 0 defines the sign of the residue

of the gauge field propagator at p2 = 0, i.e. the metric of the gauge field. Negative sign

apparently leads to the ”wrong” metric which is also not acceptable. Thus, the presence

of a pole at the real axis is certainly a problem.

The situation is different in D = 7 dimensions. Here one has

Π7(p
2) = − 1

192π3
m3/2




4
√

a(20 − 3a) − 3(a − 4)2 ln(2−
√

a
2+

√
a
)

128
√

a


 . (7.6)

Notice the sign difference compared to the D = 5 case which means that here there is no

pole in the Euclidian region but in the complex plane. In figure 20, we present the same

plots as above but for D=7.

One can see that the polarization operator in this case can take any value including

negative ones. This means that complex conjugate poles exist for any value of ξ = λm3/2.

As was already mentioned, they correspond to the ghost states and create trouble unless

they are canceled.
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Figure 20: Polarization operator for D=7 as a function of p2/m2 for real p2(left) and the absolute

value in the complex plane (right).

a) b)

Figure 21: The leading order and next-to-leading order propagator diagrams

We now come to the last step of our analysis. According to ref. [12], in the leading

order the contribution of complex conjugated poles to a physical amplitude is canceled,

thus preserving the unitarity in physical subspace. To check this, we consider the D=7

case and calculate the contribution from the conjugated ghost poles to the imaginary parts

of the Feynman diagrams in the leading and next-to-leading order of the 1/N expansion.

Consider first the one loop diagram shown in figure 21a. From the Källen-Lehmann

representation for the propagator of the auxiliary field (7.3) we take only the ghost terms

ignoring the continuous spectrum. It corresponds to the following integral:

∫
dk

(k − p)2

(
R

k2 − M2
+

R∗

k2 − M2∗

)
, (7.7)

where R and R∗ are complex numbers and M2, M2∗ are the masses of the conjugated ghost

states.

After integration, according to the dimensional regularization prescription, one gets

R

∫ 1

0
dx(1 − x)3/2(p2x + M2 + iΓ)3/2 + R∗

∫ 1

0
dx(1 − x)3/2(p2x + M2 − iΓ)3/2. (7.8)
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For real p2 the integrand apparently has no imaginary part being the sum of two

complex conjugated expressions. The integration does not change this property: the con-

tribution of the ghost states to the imaginary part (to physical amplitude) is canceled and

only the continuous spectrum remains. What is crucial here is that the ghost states are

conjugated having the opposite sign of the imaginary part and the same real part.

Consider now the next-to-leading order diagram shown in figure 15b. In this diagram

there are several ways how the ghosts might enter

1. the inner propagator - non-ghosts, the outer propagator - ghosts;

2. the inner propagator - ghosts, the outer propagator - non-ghosts;

3. the inner propagator - ghosts, the outer propagator - ghosts.

Consider the case when the ghost modes run in the inner propagator and in the outer

propagator there is a continuous spectrum (non-ghosts). Then, using the integral repre-

sentation (7.3) one has the expression

∼
∫

dm2 (m2)3/2

λ2(m2)3 + (8192π2)2
(7.9)

∫
dkdq

(k2 − m2)((p − k)2)2(p − k − q)2

(
R

q2 − M2
+

R∗

q2 − M2∗

)
.

Let us first take the integral over q. One has for the ghost part (and similar for the

conjugated one)

∼ R

∫
dk

(k2 − m2)((p − k)2)2

∫ 1

0
dx((p − k)2x(1 − x) + M2x)3/2−ε, (7.10)

where we keep ε to be finite since the two-loop integral diverges and omit the spectral

integration over m2. The latter is real and is inessential.

Evaluating the integral over k one gets

R

∫ 1

0
(x(1 − x))−1/2−ε(1 − x)2dx

∫ 1

0
dy

∫ y

0
dz(y − z)z−1/2+ε

{
+ Γ(2ε)

(
p2y(1 − y) + m2(1 − y) + M2 1 − x

x
z + iΓ

1 − x

x
z

)−2ε

[
(p2)2(1 − y)4x2 + 2p2(M2 + iΓ)(1 − y)2x(M2 + iΓ)2

]

+Γ(−1 + 2ε)

(
p2y(1 − y) + m2(1 − y) + M2 1 − x

x
z + iΓ

1 − x

x
z

)1−2ε

[
(7 − 2ε + 2)p2x2(1 − y)2 + (7 − 2ε)(M2 + iΓ)x

]

+Γ(−2 + 2ε)

(
p2y(1 − y) + m2(1 − y) + M2 1 − x

x
z + iΓ

1 − x

x
z

)2−2ε

x2 (7 − 2ε)(3 − 2ε)

4

}
.
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Expanding over ε one has singular and regular parts. The singular part is

R

2ε

∫ 1

0
(x(1 − x))−1/2(1 − x)2dx

∫ 1

0
dy

∫ y

0
dz(y − z)z−1/2

{
+

[
(p2)2(1 − y)4x2 + 2p2(M2 + iΓ)(1 − y)2x(M2 + iΓ)2

]

−
(

p2y(1 − y) + m2(1 − y) + M2 1 − x

x
z + iΓ

1 − x

x
z

)[
9p2x2(1 − y)2 + 7(M2 + iΓ)x

]

+

(
p2y(1 − y) + m2(1 − y) + M2 1 − x

x
z + iΓ

1 − x

x
z

)2

x2 21

8

}
.

The remaining integrals over Feynman parameters are convergent and can be easily evalu-

ated. One can see that due to the presence of iΓ the integrand is complex, but adding the

complex conjugated term one gets the real polynomial of p2.

As for the regular part, it contains

log

((
p2y(1 − y) + m2(1 − y) + M2 1 − x

x
z + iΓ

1 − x

x
z

))

and has a cut in momentum plane. However, the logarithm can always be presented in

the form log(Aeiφ) = log(A) + iφ, where both the modulus A and the phase φ depend on

Feynman parameters. This means that adding the conjugated part one again gets the real

integrand and, hence, the real function after integration. Here it is again crucial that the

ghost states are conjugated and differ only by the sign of the imaginary part.

Thus, we conclude that the contribution from the conjugated ghost states to the imag-

inary part of the diagram is canceled and, therefore, the ghost states do not contribute

to physical amplitudes. The same analysis can be carried out for the other choices of the

ghost fields in figure 21b. Moreover, it seems to work in any diagram in all orders of the

1/N expansion since the reason for the cancellation is simple and obvious. This means

that the unitarity in the physical sector is preserved.

The situation is somewhat similar to that in ref. [31], where the mass generation

problem was discussed in the context of higher derivative theory. Besides the physical

states there exist non-physical states with a negative norm, but in the asymptotic states

the negative norm excitations disappear thus preserving the unitarity of the theory.

8. Conclusion

We conclude that in higher dimensional scalar and gauge theories despite formal non-

renormalizability it is possible to construct renormalizable 1/Nf expansion which obeys all

the rules of a usual perturbation theory. The expansion parameter is dimensionless, the

coupling is running logarithmically, all divergencies are absorbed into the renormalization

of the wave function and the coupling. The original dimensionful coupling plays a role of

a mass and is renormalized multiplicatively. Expansion over this coupling is singular and

creates the usual nonrenormalizable terms.
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Properties of the 1/Nf expansion do not depend on the space-time dimension if it

is odd. In even dimensions our formulas after subtraction contain a logarithm which

creates some technical problems in calculations but principally do not differ from the odd

dimensions.

Since the actual expansion parameter is dimensionless, all the Green functions get

logarithmic radiative corrections and the cross-sections decrease with energy like in usual

renormalizable theories without violating the unitarity limit. The running of the couplings

depends on dimension and does not depend on Abelian or non-Abelian nature of a theory.

This may be considered as a drawback of the 1/Nf expansion. Unfortunately, the preferable

1/Nc expansion cannot be constructed in the same simple manner.

We have demonstrated how one can deal with the problem of unitarity and unphysical

pole states. The poles at the real axis can be removed by a proper choice of a dimensionless

parameter ξ = λmD/2−2 which corresponds to the correct choice of the phase of a theory.

However, this does not make a theory reliable. At the same time, the complex conjugated

poles remain but fortunately their contribution to the physical amplitudes is canceled. We

do not provide a rigorous proof of this cancellation but present the reason for it and several

examples how it works in Feynman diagrams. Accepting this reasoning the theory seems

to be unitary in physical subspace.

We hope that this approach can be used in extra dimensional theories to get the

scattering amplitudes. We expect that the behaviour of the cross-sections will differ from

those of the Kaluza-Klein approach [2] being closer to our approach [32] based on the fixed

points.

Besides the already mentioned papers [12] there are several attempts to build renor-

malizable effective quantum gravity using a kind of 1/N expansion [33], where the role of

an expansion parameter 1/N is played by the number of space-time dimensions. The large

D limit in this case is very similar to the large Nc planar diagram limit in the Yang-Mills

theory considered by ’t Hooft [27]. The technique similar to the 1/Nf expansion is used

also in [34], where the author sums up the soft graviton corrections to the propagator of

the scalar field and gets an improved propagator which decreases faster than any power of

momenta. Though this partial resummation is similar to the 1/N expansion, the absence

of an expansion parameter does not justify, to our mind, the selected set of diagrams. From

this point of view the 1/N expansion is more consistent and contains the guiding line for

such a selection.
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